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ABSTRACT 

 

 Reliable satellite measurements of sea surface temperature (SST), precipitation, and 

outgoing longwave radiation (OLR) in the central-eastern tropical Pacific are indispensable for 

monitoring and predicting the El Nino-Southern Oscillation (ENSO). To test the consistency of 

the relationships among these three variables, monthly average SST anomalies, rainfall, and 

OLR in the Nino 3.4 region were compared over one full ENSO cycle—April 2009 to June 

2011—and linearly correlated. Datasets from the National Aeronautics and Space Administration 

(NASA) Earth Observations website included SST anomalies from the Advanced Microwave 

Scanning Radiometer - Earth Observing System (AMSR-E), OLR from the Clouds and the 

Earth’s Radiant Energy System (CERES) sensors, and rainfall from Tropical Rainfall Measuring 

Mission (TRMM) Microwave Imager and Precipitation Radar. Monthly maps, 27 for each 

variable, were produced using the Imager Composite Explorer (ICE) analysis tool on the NASA 

Earth Observations website. Using Python, time series and scatter plots were created, and 

correlation coefficients were calculated. 

 The results of this investigation verified findings from past studies, clearly showing that 

OLR decreases as SST anomaly and rainfall increase. OLR and rainfall were strongest 

correlated, while SST and OLR were weakest correlated. The delayed reaction of the atmosphere 

to ocean warming might have explained the deepest convection that occurred one month 

following the highest SST anomalies during El Nino. Nonetheless, these variables were strongest 

correlated during El Nino and weakest correlated during La Nina, possibly due to the more 

spatially organized precipitation that occurred during El Nino. This investigation suggests that 

applying multiple variables may be advantageous in identifying the ENSO state. Future research 

involving more sophisticated methods, such as using different combinations of satellite 

instruments, study regions, and time periods, would help climatologists disseminate more 

accurate information regarding the ENSO on both interannual and interdecadal timescales.   
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INTRODUCTION 

 

 Ocean-atmosphere interactions lead to climatic variations, particularly the El Nino-

Southern Oscillation (ENSO) phenomenon. The term El Nino, or “Christ Child” in Spanish, 

originated from fishermen off the coast of South America in the 1600s, who noticed the 

emergence of abnormally warm water around December (NOAA 2018). El Nino, the warming 

phase of sea surface temperatures (SSTs) across the central-eastern tropical Pacific, negatively 

impacts the Peruvian fishing industry due to the reduced upwelling of cold water. Linkages 

between El Nino and climate patterns around the globe, an example of teleconnections, include 

increased rainfall and flooding in the southern United States, a weakened east Asian winter 

monsoon, and reduced convergence east of Australia (Rasmusson and Carpenter 1982). On the 

other hand, La Nina, the cooling phase of SSTs across the central-eastern tropical Pacific, is 

usually linked with reduced rainfall and droughts in the southern United States. Typically, El 

Nino and La Nina episodes last 9-12 months and occur every 2-7 years, with La Nina events 

occurring more frequently, but less intensely, than El Nino events (NOAA 2018).  

 To accurately monitor and predict the ENSO, it is important to understand the 

relationships between SSTs, precipitation, and outgoing longwave radiation (OLR). During El 

Nino, the warmer ocean surface, thus warmer atmosphere, gives rise to deep convective clouds 

and precipitation. Higher sea surface temperatures are related to negative OLR anomalies. 

Because satellites sense the tops of clouds, they are essentially measuring cloud top temperature 

in the thermal infrared (TIR) range, which tends to be lower due to increased convection. The 

opposite takes place during La Nina—negative SSTs, positive OLR, and negative precipitation 

anomalies. A previous study showed that tropical Pacific SSTs and northeast Brazil precipitation 

are weakly correlated in January, not well correlated in February, and negatively correlated from 

March to May (Uvo et al. 1998). The study found that SST patterns from January to March are 

closely related to the precipitation from February to May, the rainy season, partly because SST 

anomalies exhibit 2-3-month persistence (Uvo et al. 1998). In certain regions of the central-

eastern tropical Pacific, SST-OLR coupling is strong and mostly invariant with season 

(L’Heureux et al. 2015). As explained by Xie and Arkin (1998), correlations of around -0.6 

suggest a sufficiently strong negative relationship between OLR anomalies and precipitation 

anomalies in the tropics on a mean annual basis. However, the precipitation observations used 
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were relatively low-quality, as their research was conducted before the launching of the Tropical 

Rainfall Measuring Mission (TRMM) satellite. 

 From the Northern Hemisphere (NH) spring to the end of the year, the eastern tropical 

Pacific SST anomaly pattern migrates from the coast of South America to around 170°W in 

central tropical Pacific (Rasmusson and Carpenter 1982). The National Oceanic and 

Atmospheric Administration (NOAA) uses the Oceanic Nino Index (ONI), which represents 

mean SST anomalies for the Nino 3.4 region, located at 5°N-5°S and 120°W-170°W (Golden 

Gate Weather Services 2019). This region is considered to be particularly sensitive to the ENSO. 

Despite the popularity and efficacy of the ONI in monitoring and predicting the ENSO state, 

some scientists have argued that the Central Pacific OLR and combined indices should be added 

to the current suite of ENSO indices (L’Heureux et al. 2015). A combined index of SSTs and 

OLR has been proven to describe more variability in winter and spring precipitation and summer 

temperature in North America (L’Heureux et al. 2015). Based on the Global Precipitation 

Climatology Project (GPCP) community precipitation dataset, with merged gauge and satellite 

observations, the ENSO Precipitation Index (ESPI) leads the ONI and Southern Oscillation 

Index (SOI) in representing the ENSO by a month (Curtis and Adler 2000). The ESPI not only 

produces stronger La Nina events than the ONI and SOI, but it also better describes the strength 

and position of the Walker circulation (Curtis and Adler 2000).  

 Some satellite remote sensors are active, receiving and transmitting radiation, while 

others are passive, only receiving radiation. All three climate variable can be measured in the 

TIR part of the electromagnetic spectrum, but SSTs and precipitation are also routinely detected 

in the microwave region. Relative to TIR images, microwave images have coarser resolution. 

However, where clouds exist, TIR imagery does not provide any information about the lower 

atmosphere or the Earth’s surface. Nontraditional wavelengths, namely those in the microwave 

range, are advantageous because they allow for the direct sensing of precipitation through 

clouds. The TRMM Microwave Imager (TMI) has provided a means of collecting more 

quantitative data, such as rainfall rate and cloud liquid water, at lower latitudes. Henderson et al. 

(2018) pointed out that large discrepancies between the TMI and TRMM’s Precipitation Radar 

(PR) in the Pacific are “related to shifts from isolated deep convection during a La Nina toward 

organized precipitation during El Nino.” They explained that TMI rain rates increase more, in 
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comparison with PR rain rates, due to greater stratiform raining fractions (Henderson et al. 

2018). 

 In addition to satellite data, conventional data from surface observing stations, ships, and 

buoys are used to describe the evolution of SST anomalies in the central-eastern tropical Pacific 

(Rasmusson and Carpenter 1982). Many satellites continuously collect data over a relatively 

large area of the globe, whereas conventional data are often limited in space and time. For 

instance, the TRMM has enabled us to monitor and study precipitation over the expansive 

tropical oceans. Even over land, the TRMM has helped fill in the gaps among rain gauges, which 

are point observations, subject to great error and bias. Aircraft lidar and doppler radar are used to 

provide detailed measurements of clouds and precipitation, but coverage is lacked in many parts 

of the world, notably remote or underdeveloped areas. The study by Henderson et. al (2018) 

revealed that ground validation measurements applied to TRMM rain estimates led to improved 

agreement between the TMI and PR. This suggests that that it is essential to incorporate both 

satellite and conventional data into ENSO monitoring and prediction.  

 To validate the satellites and results from these previous studies, this investigation seeks 

to address the following research questions: 1) how are satellite-derived SST anomalies, rainfall, 

and OLR related to one another in the central-eastern tropical Pacific? 2) to what extent are 

these variables correlated during an El Nino event, neutral conditions, and a La Nina event? 3) 

what are the limitations of satellite remote sensing for tropical ocean-atmosphere monitoring? 

The time period, April 2009 to June 2011, included a moderate El Nino, neutral conditions, and a 

strong La Nina—one full cycle of the ENSO. Monthly average SST anomalies, rainfall, and 

OLR in the Nino 3.4 region were visualized on maps, plotted with time, and compared on scatter 

plots statistically. Based on known relationships among these three variables, OLR was expected 

to decrease as SST anomalies and rainfall increase over the full ENSO cycle. Furthermore, high 

correlation during El Nino, medium correlation during neutral conditions, and low correlation 

during La Nina were anticipated because clouds and precipitation tend to be more organized and 

consistent as SST anomalies increase. Satellite resolution, frequency, and wavelength band were 

expected to impact remote sensing accuracy over tropical oceans.      
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DATA AND METHODS OF ANALYSIS 

 

 For all three variables, datasets were obtained from the National Aeronautics and Space 

Administration (NASA) Earth Observations website (https://neo.sci.gsfc.nasa.gov/). This website 

is controlled by the Earth Observing System (EOS) Project Science Office at the NASA Goddard 

Space Flight Center (NEO 2019). SST anomalies were based on monthly data from the 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) on NASA’s Aqua satellite, 

compared with climatological data (1985-1997) from NOAA’s Advanced Very High Resolution 

Radiometer (AVHRR) Pathfinder satellite sensors (NEO 2019). One limitation of this data was 

that the AMSR-E used microwave radiation, while the AVHRR used TIR radiation (NEO 2019). 

Theoretically, AVHRR interpolation errors, due to the presence of clouds, canceled out over 

climatological timescales. Also, the 12-year climatology, although including both El Nino and 

La Nina years, could have been longer and extended to more recent years. The OLR data 

included daily, space-and-time average, top-of-the atmosphere, and surface flux observations 

collected by the Clouds and the Earth’s Radiant Energy System (CERES) sensors on NASA’s 

Aqua and Terra Satellites (NEO 2019). Although considered high-quality data, these daily, near-

real time observations were not nearly as carefully calibrated as the standard CERES data 

product (NEO 2019). Rainfall amounts were derived by the TRMM Microwave Imager and 

Precipitation Radar instruments, with a field of view ranging from 35°N-35°S (NEO 2019). 

Lower resolution is related to longer wavelength; nevertheless, the TRMM has dramatically 

improved global precipitation measurements. 

 NOAA’s ONI was used to determine the ENSO phase in this investigation. El Nino is 

declared if a five consecutive 3-month running mean of SST anomalies exceeds the threshold of 

+0.5°C in the Nino 3.4 region (NCDC). Accordingly, there is a La Nina when the mean is less 

than -0.5°C. Figure 1 outlines the Nino 3.4 region, along with several other Nino regions, which 

is known as an area of persistent deep convection. An approximated Nino 3.4 box (4.875°N-

4.875°S, 120.125°W-169.875°W) was used in this study because of the deficiency of rounded 

latitude and longitude values in the datasets. As displayed in Figure 2, El Nino lasted from July 

2009 to March 2010, while La Nina lasted from June 2010 to May 2011. Neutral conditions 

occurred on April-June 2009, April-May 2010, and June 2011. An El Nino or La Nina event is 

considered weak if the magnitude of the ONI is between 0.5 and 0.9, moderate if between 1.0 
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and 1.4, strong if between 1.5 and 1.9, and very strong if greater than 2.0 (Golden Gate Weather 

Services 2019). Notwithstanding, the 2009-10 El Nino was classified as moderate, even though 

the magnitude of the ONI was practically the same as that of the strong 2010-11 La Nina. 

 

 

 

Figure 1. The various Nino regions for the tropical Pacific. Nino 3.4 (5°N-5°S, 120°W-170°W) was used 

for this investigation. Source: https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/.  

 

 

 

 

 

 

 

Figure 2. Running 3-month mean ONI values. Red indicates the El Nino phase, black indicates the 

neutral phase, and blue indicates the La Nina phase. Note the time period April 2009 to June 2011. 

Source: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.  
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 Using the Image Composite Explorer (ICE) analysis tool on the NASA Earth 

Observations website, monthly SST anomaly, rainfall, and OLR maps were produced. For each 

of the 27 months, the latitudes and longitudes of the Nino 3.4 box, “Basic Exploration” mode, 

and “0.25 degrees” file size were inputted before launching the analysis. Since there was no 

simple way of downloading all the maps at once, screenshots were manually taken and combined 

into a single figure for each variable. Hence, the map areas may have varied slightly. The overall 

patterns within the Nino 3.4 region were negligibly affected. As described on ICE analysis tool 

page, the data values were based upon the scaled range of the imagery, and, thus, this technique 

should not be employed in more extensive research endeavors (NEO 2019).  

 The monthly datasets were downloaded as “CSV for Excel” files, each with 1440 x 720 

dimensions and values spaced 0.25 degrees apart. For efficiency, a Python program was designed 

and run to read each file for each variable. The mean of the two-dimensional array of Nino 3.4 

values was calculated each time, resulting in 27 mean values for each variable. Using these mean 

values, a time series plot of SST anomaly, rainfall, and OLR was created to show how these 

variables were related in different months. Next, three scatter plots—SST anomaly versus 

rainfall, SST anomaly versus OLR, and OLR versus rainfall—were produced to show the 

relationships among the variables. Linear regression was performed on all values in each 

correlation. Additionally, correlation coefficients (r) for each relationship were calculated, which 

can be found by hand using the formula 

   

(1)  

 

where x is the independent variable and y is the dependent variable. Knowing the dates of the El 

Nino, neutral, and La Nina events, the correlation coefficients for each ENSO phase, nine in 

total, were computed. 
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RESULTS AND DISCUSSION 

 

 As presented in Figure 3, most of the SST anomalies in the central-eastern tropical 

Pacific were near zero in April 2009, becoming increasingly positive throughout the year. The 

peak in SST anomalies occurred around January 2010, which was when ONI values were 

maximum. Negative SST anomalies began to show up again during the transition into La Nina, 

reaching the lowest values around November 2010, which was when ONI values were minimum. 

SST anomalies became less negative as the La Nina weakened and transitioned into neutral 

conditions. In the western portion of the domain, the SST anomalies varied the most from El 

Nino to La Nina, suggesting that this area is more sensitive to the ENSO. The higher SST 

anomalies seem to have moved from east to west as the El Nino strengthened, while the lower 

SST anomalies seem to have moved from west to east as the La Nina strengthened. This likely 

signifies the presence of Kelvin and Rossby waves, which propagate over the tropical Pacific. 

 Figure 4 shows monthly rainfall, which followed somewhat different patterns than those 

of SST anomalies over the central-eastern tropical Pacific. It appears that rainfall slightly 

decreased during 2009, particularly in the NH early fall. Rainfall reached the highest values in 

February 2010, but were more consistently high across the domain in April 2010. As Uvo et al. 

(1998) described, SST anomalies exhibit 2-3-month persistence, which may be less in the Nino 

3.4 region. These results were potentially due to the delayed response of the atmosphere to 

increasing ENSO SST anomalies. Rainfall decreased throughout the rest of 2010, reaching 

minimum values around or a little after November 2010, when ONI values were minimum. 

However, rainfall noticeably increased in the NH late winter and early spring. This may be 

because many of the SST anomalies were still above the threshold for persistent deep convection 

to occur, despite negative SST anomalies in this region (NCDC). 

 Although negatively related to rainfall, OLR was quite comparable to rainfall spatially 

and temporally, as depicted in Figure 5. OLR increased slightly during the NH late summer and 

early fall. The minimum OLR values appeared around February 2010, notably in the western 

portion of the domain. As El Nino weakened and La Nina strengthened, OLR values increased. 

In the NH late winter and early spring 2011, the OLR values decreased, although not nearly as 

much as some of the OLR values during the El Nino. These maps imply a strong relationship 

between OLR and rainfall, which is explicitly shown in Figure 9. 
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Figure 3. Monthly maps of SST anomalies in the Nino 3.4 region from April 2009 to June 2011. Warmer 

colors indicate positive SST anomalies, while cooler colors indicate negative SST anomalies. Black 

represents areas with no available data (i.e. land). Source: https://neo.sci.gsfc.nasa.gov/. 
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Figure 4. Monthly maps of rainfall in the Nino 3.4 region from April 2009 to June 2011. Darker colors 

indicate higher rainfall, while lighter colors indicate lower rainfall. Source: https://neo.sci.gsfc.nasa.gov/. 
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Figure 5. Monthly maps of OLR in the Nino 3.4 region from April 2009 to June 2011. Orange indicates 

greater OLR, while blue indicates less OLR. Source: https://neo.sci.gsfc.nasa.gov/. 
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 In Figure 6, the temporal variations in mean SST anomaly, rainfall, and OLR and 

relationships among these variables are illustrated. SST anomaly increased throughout 2009, 

reached its maximum around January 2010, decreased throughout 2010, reached its minimum 

around December 2010, and increased thereafter. These trends are similar to those displayed in 

Figure 3. OLR values were relatively high in NH late summer and early fall 2009 and then again 

in mid-late 2010. The minimum OLR value occurred on February 2010, with a smaller decrease 

in OLR around April 2011. As the direct opposite of OLR, rainfall generally increased when 

OLR decreased and decreased when OLR increased. January to February 2011 was the 

exception, when both OLR and rainfall increased. This might suggest that lower clouds did not 

always have higher temperatures or produce less rainfall due to other factors, suggest as 

advection by winds. Although these three variables seem to have been well correlated, the 

response to the highest SST anomalies was slightly delayed, as evident in the separation between 

SST anomaly and OLR maxima by one month. 

 

 

 

Figure 6. Time series plot of mean SST anomaly (blue), rainfall (green), and OLR (red) in the Nino 3.4 

region from April 2009 to June 2011. Data: https://neo.sci.gsfc.nasa.gov/.  
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 The correlation coefficients indicate that OLR and rainfall were strongest correlated 

(Figure 9), SST anomaly and rainfall were weaker correlated (Figure 7), and SST anomaly and 

OLR were weakest correlated. Nevertheless, the overall relationships among the variables were 

validated—a positive relationship between SST anomaly and rainfall, a negative relationship 

between SST and OLR, and a positive relationship between OLR and rainfall. The strong 

correlation between OLR and rainfall is consistent with the findings of Xie and Arkin (1998). 

Unlike the strong SST-OLR coupling noted by L’Heureux et al. (2015), the correlation between 

SST anomaly and OLR was weakest. However, a correlation coefficient of -0.44, displayed in 

Figure 8, is still considerable. The weaker correlations (Figure 7 and Figure 8) might have been 

due to inconsistencies in SST anomaly measurements, which could partially have been due to 

AMSR-E relying on a different wavelength range (microwave) than that of the AVHRR (TIR). 

For distinct ENSO phases, the correlation coefficients for SST anomaly versus rainfall are 

roughly the same, with a slightly stronger correlation during neutral conditions. SST anomaly 

and OLR clearly had the strongest correlation during an El Nino, while there were similar 

correlations during the neutral and La Nina phases. OLR and rainfall were strongest correlated 

during El Nino and weakest correlated during La Nina. Considering all three scatter plots, the 

variables had the strongest relationships during El Nino and weakest relationships during La 

Nina. More organized precipitation during El Nino, as Henderson et al. (2018) mentioned, 

allowing the satellite to more accurately sense large-scale patterns, likely explained the stronger 

relationships among these variables.  
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Figure 7. Linear correlation between mean SST anomaly and rainfall. The best fit line and correlation 

coefficient are displayed. El Nino (red circles), neutral (purple squares), and La Nina (blue diamonds) are 

differentiated, with their correlation coefficients shown in the legend. Data: https://neo.sci.gsfc.nasa.gov/.  

 

 

 

Figure 8. Linear correlation between mean SST anomaly and OLR. The best fit line and correlation 

coefficient are displayed. El Nino (red circles), neutral (purple squares), and La Nina (blue diamonds) are 

differentiated, with their correlation coefficients shown in the legend. Data: https://neo.sci.gsfc.nasa.gov/.  
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Figure 9. Linear correlation between mean OLR and rainfall. The best fit line and correlation coefficient 

are displayed. El Nino (red circles), neutral (purple squares), and La Nina (blue diamonds) are 

differentiated, with their correlation coefficients shown in the legend. Data: https://neo.sci.gsfc.nasa.gov/.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

SUMMARY AND CONCLUSIONS 

 

 The primary objectives of this investigation were to assess the relationships between SST 

anomalies, rainfall, and OLR, determine the correlations among these variables during different 

ENSO phases, and identify the limitations of satellite remote sensing of the ENSO. While most 

previous studies agree that, in general, there are strong correlations among these variables, some 

studies showed that these correlations can significantly vary depending on the study region, time 

of year, and type of satellite sensor. To validate these findings and test the hypothesis that 

correlations are highest during El Nino and lowest during La Nina, monthly average SST 

anomalies, rainfall, and OLR in the Nino 3.4 region were evaluated and compared with one 

another over one full ENSO cycle. The satellite observations used in this study included AMSR-

E microwave-derived SST anomalies, CERES infrared-derived OLR, and TRMM microwave 

and radar-derived rainfall. Maps were produced using NASA’s ICE analysis tool, while time 

series and scatter plots were produced in Python. Correlation coefficients were not only found 

for each variable throughout the entire period, but also for El Nino, neutral, and La Nina events, 

separately. 

  As expected, SST anomalies and rainfall increased during El Nino development and 

decreased during La Nina development. However, the peak in rainfall followed the highest SST 

anomalies one month later, suggesting that the atmosphere had a delayed response to the ocean. 

Similarly, OLR reached minimum values one month after the highest SST anomalies. Overall, 

the known relationships between SST anomalies, rainfall, and OLR over time were confirmed, 

with the exception of January to February 2011. All figures of OLR versus rainfall showed that 

these two variables were strongest correlated, whereas figures of SST anomaly versus OLR 

revealed that these two variables were weakest correlated. Despite the inconsistencies in the 

correlation coefficients, the variables seemed to be have been strongest correlated during an El 

Nino, perhaps because of the more spatially organized precipitation, compared with more 

isolated convective cells during neutral or La Nina conditions. 

 These results suggest that multiple variables can be used in identifying the ENSO state. 

Although the ONI is widely considered the default ENSO index, a combined index of SST, 

rainfall, and OLR—or any pair of these variables—may aid in more accurately monitoring and 

predicting the ENSO. Furthermore, this investigation demonstrates that it is acceptable to use 
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both direct and indirect methods of satellite remote sensing to analyze the ENSO. Microwave 

sensors are capable of sensing precipitation through clouds, while TIR sensors lead to finer 

resolution images. Future studies are needed to validate these results, using different 

combinations of time periods, satellite instruments, and perhaps ground truth measurements. 

Moreover, one should not be limited to the Nino 3.4 region; other areas of the central-eastern 

tropical Pacific are also quite sensitive to the ENSO. Ideally, one would incorporate datasets with 

rainfall anomalies and OLR anomalies, comparing these with SST anomalies. These studies 

would further add to our understanding of the ENSO, which affects people around the globe on 

an interannual timescale and, conceivably, on longer timescales increasingly due to climate 

change.  
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