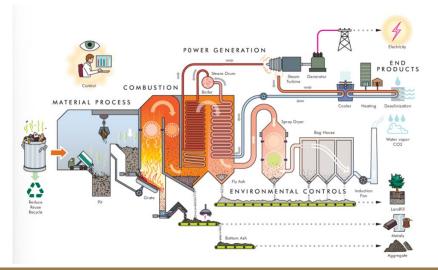
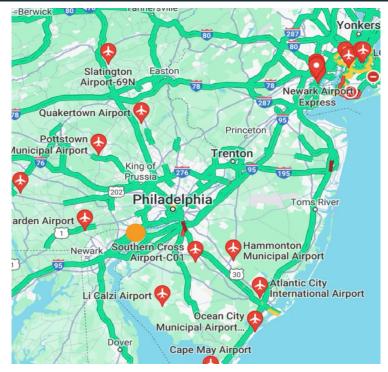
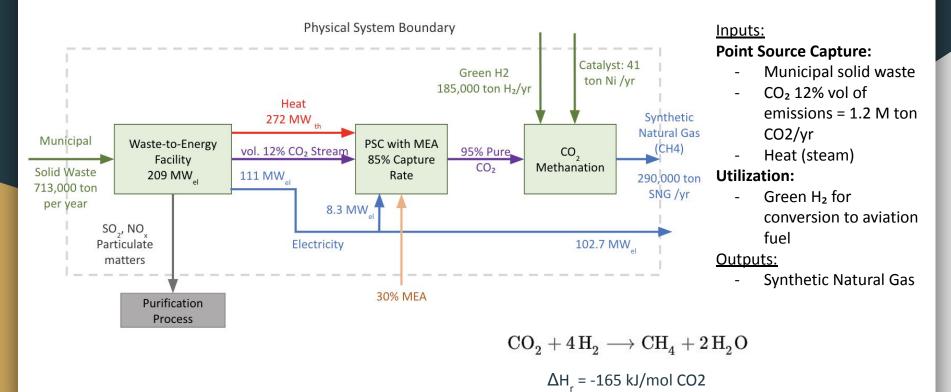


Carbon Capture & Utilization from a Waste-to-Energy Facility

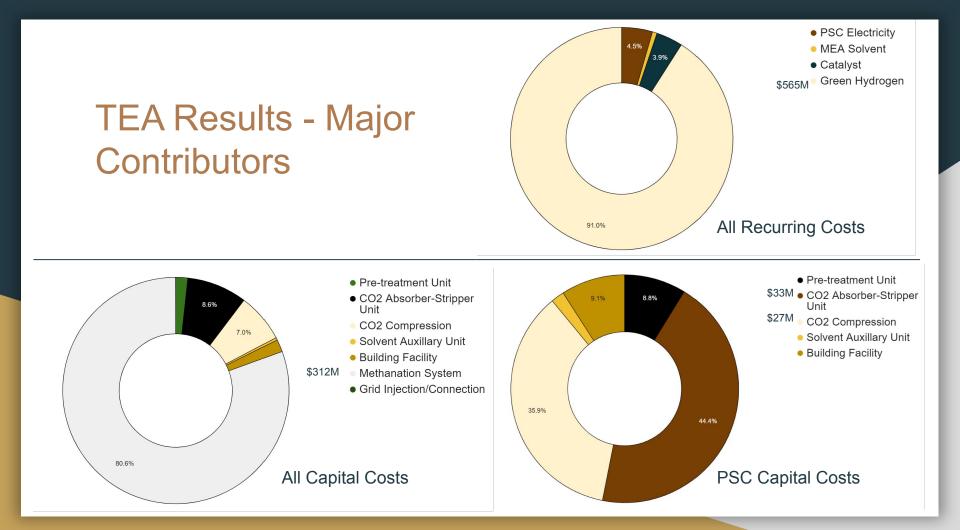

Final Presentation - Group 2


Ankit Chandra, Mallory Delanoy, Matthieu Dominici, Ashley Gigon, Jiaxin Wang, Benjamin Yang

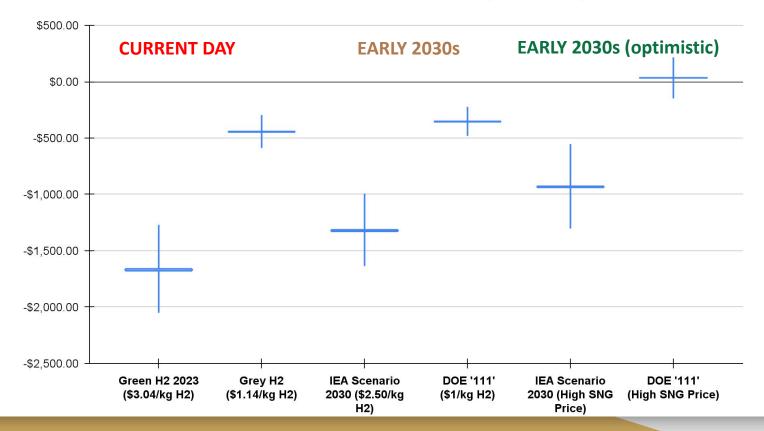
Project Overview


- Focus on Chester, PA Covanta site
 - Add PSC
 - Scale up by 2.4 times reach goal
 - Sufficient waste
- Co-Benefits from this process
 - Already saving waste from landfill

- Utilization
 - Most sensible
 - Close proximity to many airports


Technical Analysis - Flow Diagram

TEA Results - Costs & KPIs


Capital costs: -PSC design: \$75M Conversion: \$312M _ Operating costs: PSC design: \$32M Conversion: \$590M -Revenue: Synthetic NG: \$155M -Key assumptions: SNG sale price: \$0.54/kg -MEA: \$2.76/kg -Green H2: \$3.04/kg _ Electricity: \$0.03/kWh -

KPIs	Value
Net Present Value	\$-30B
Carbon Capture	\$627/ton CO2
SNG Production Cost	\$2,212/ton SNG
SNG Revenue	\$538/ton SNG
SNG Net Revenue	\$-1,675/ton SNG

TEA Results - Sensitivity & Scenario Analysis

Net Profit based on Price Scenario (\$/ton SNG)

Economic Profitability in 2030 Optimistic Scenario

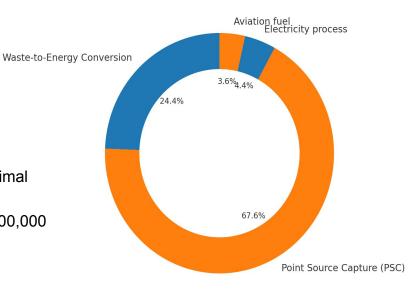
Key assumptions:

- SNG sale price:

\$0.87/kg

- Green H2 cost:
- \$3.04/kg

- Methanation Unit

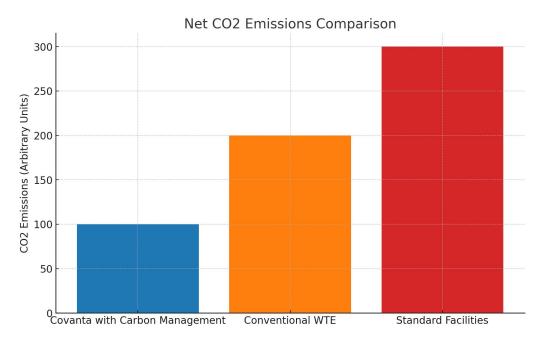

¢21	21/
φυτ	2111

\$174M

KPIs	Value
Net Present Value	\$ -312M
Carbon Capture	\$ 235/ton CO2
SNG Production Cost	\$ 829/ton SNG
SNG Revenue	\$ 870/ton SNG
SNG Net Profit	\$ 41/ton SNG

Current Process LCA & Contributors

- Waste-to-Energy contributes 24.4% to total CO2 emissions.
- PSC, mainly solvent regeneration, is the major contributor at 75.6%.
- Electricity process & Aviation fuel/SNG have minimal impact.
- Net CO2 Emissions from WTE Conversion = 1,200,000
 887,000 = 313,000 tons CO2 per year.
- PSC CO2 Capture Efficiency ≈ 85%


LCA Sensitivity Analysis

MEA Efficiency Increase MEA efficiency strongly affects CO2 capture. MEA Efficiency Decrease 25% Electricity efficiency has a moderate impact. **Electricity Efficiency Increase** Waste input directly influences CO2 emissions. **Electricity Efficiency Decrease** 10% Waste Input Increase 20% Waste Input Decrease -20 -1010 20 0 Change in CO2 Emissions (%)

Impact of Variable Factors on CO2 Emissions

LCA Comparison & Assumption


- Covanta's current process with carbon capture significantly reduces CO2 emissions compared to:
 - Conventional WTE without carbon management.
 - Standard power plants or industrial facilities emitting CO2 without capture.
- Assumptions and Deliberate Emissions
 - Emission Source Focus
 - Simplified Life Cycle Stages
 - CO2 Utilization Efficiency
 - No Secondary Effects

COVANTA Location: Chester, Greater Philadelphia Region

Proximity to SAF Demand Centers: Philadelphia International Airport (13 miles); Wilmington Airport (17.9 miles); Brandywine Regional Airport (19 miles); New Castle Airport (21 miles); and Chester County Airport (36 miles)
 Access to Colonial's Line 39 Pipeline: for SAF delivery (Airport fuel tank farm). Also connects with Colonial's 5500 mile system connecting major airports

Location of CO₂ Point Sources

In 2018, Philadelphia generated 2.2 MMT of MSW annually.
Current MSW estimated between 3 to 3.5 MMT.

Clean Energy Availability

Ample potential to leverage solar, wind, geothermal, and biomass sources.
PA has committed to be 100% renewable powered by 2050 or sooner.

Land, Water, Biomass Availability

Ample industrial land availability in urban, peri-urban areas. Approx. 20 million sq. ft. @ \$6.3/sq. Ft.
Industrial use accounts for 7% of ground & surface water withdrawals from Delaware River basin (6.4 bn gallons per day)
PA forests produce ~ 6 to 9 MMT of wood and forest by products annually

COVANTA Location: Chester, Greater Philadelphia Region

Updated August 2021

Socioeconomic & Community Impacts

Jobs		Up to 36 direct and indirect jobs created per 10,000 tons of waste processed annually PA lost over 600 coal mining jobs from 2017 to 2020, highlighting the need for new employment in sustainable industries
Waste Reduction		Philadelphia, fifth most populated city in the U.S.; population density @ 11,936.92/sq mi (2022) The WtE plant could reduce 2,000 lbs of garbage to 300-600 lbs of ash; thus potentially reducing waste volume by about 87%
Communities	٦	Increase awareness of sustainable waste management, through renewable energy workshops, educational partnerships, facility tours.
Others		Effective waste management contributes to better air and water quality thereby enhancing overall quality of life Stimulate demand for local services and goods, enhancing economic resilience.

Conclusions

Process: 1 Mt CO2 Capture and Conversion to Natural Gas from a Waste-to-Energy Plant

- Technologically mature but large-scale implementation of methanation are few
- Aggressive cost reduction of H2 and methanation units is necessary
- PSC similar to that at standard fossil fuel or industrial facilities, can be carbon-negative like BECCS depending on biogenic waste fraction, and more effective than DAC
- Unlike carbon mineralization, CO2 is not permanently sequestered (planes emit CO2 back to atmosphere)
- Why converting valuable H_2 into CH_4 ?
 - \rightarrow Easy Long-term Storage \rightarrow Existing Pipelines \rightarrow F

 \rightarrow Potential use as SNG

Recommendations

- We recommend further research in this process because of multiple benefits for a densely-populated area with growing waste and demands:
 - Divert waste from landfills which emit CH_4 (100x more potent than CO_2)
 - WTE facility powers itself, homes, and businesses
 - Produce synthetic natural gas to eventually use as fuel for nearby airports
- Investments in 2030 is economically viable
- Policies or incentives to improve prospects of implementation of the process at scale:
 - Certificates or tax credits for WTE negative emissions
 - Fund development and production of green hydrogen and SNG
 - Support research about new CCUS technologies
 - Streamline environmental review process and educate community

Thank you!

Questions?