BIOMASS: CARBON STORAGE IN NEW YORK AND NEW JERSEY

> Gabriel Rosenstein Benjamin Yang Amani Rodriguez Alice Yan

01 **THE PROBLEM**

02

GROUND TRUTHING

And the forest To supplement biomass solution remote sensing

METHODS And their

03

limitations

04 **OVERALL TRENDS** 05 **CASE STUDIES**

Succession Fire Disease

05 THE COMPLETE **PICTURE**

THE PROBLEM

AMBITIOUS EMISSION TARGETS

New York: 85% of its 1990 state wide GHG emissions by 2050. The Climate Leadership and Community Protection Act 2019

New Jersey: 80% of its 2006 state wide GHG emissions by 2050. Global Warming Response Act

BIOMASS SOLUTION

CARBON SEQUESTRATION

Forests will play a crucial role

New York: Forest cover: 61% Biomass: 3.2 billion tons Carbon: 1.6 billion tons

New Jersey: Forest cover: 45% Biomass: 118.8 million tons Carbon: 59.4 million tons

REMOTE SENSING

LiDAR suggests a decline in aboveground New York forest biomass in recent years

GROUND TRUTHING

What are site-level carbon sequestration trends and do they align with landscape-level trends?

METHODS: (1) SELECTING DATA

SELECT SITES

- 4+ years of stand-level fidelity or
- 2+ years of plot-level fidelity

POOL DATA

- 2006 removed due to sampling of different size classes.
- Included live and dead trees.

CLEANUP

- No shrubs
- Each measured stem = new tree measurement
- Standardization of genus names

METHODS: (2) ALLOMETRIC FORMULAS

CHOJNACKY (2014)

Genus-level equations Family-level equations

Mixed hardwood equation

METHODS: (3) RELATIVE BIOMASS CALCULATION

GENERATING BIOMASS EQUATIONS

Exp(β₀ + β₁ ln(dbh)) Absolute biomass in kg

CALCULATING PLOT SIZE

Trees with DBH < 10 cm: r=5 m Several 2014 plots: r=20 m All others: r=10 Area in hectares = πr²x 10⁻⁴

|--|

RELATIVE BIOMASS

Biomass in kg x 10⁻³ / plot area = Mg of biomass per hectare

METHODS: (4) ANALYZING DATA IN PYTHON

SELECT BIOMASS (MG HA⁻¹)

Column in CSV file with value for each tree in each forest plot.

COMPUTE STATISTICS

Combine (sum) by year, group #, and genus. Find mean, standard error, and linear regression line.

CREATE GRAPHS

Total biomass vs. year for all trees and by genus (top 5) at each site. Compare all sites together: biomass vs. year and rate of change.

RESULTS

Ecoregions derived from United States Environmental Protection Agency, 2022

RESULTS **All Forest Sites** 450 -**BRF Hollow** (Mg ha^{-1}) 400 **BRF** Ridge 350 -300 -**Total Biomass** NYBG 250 -200 -150 -100 -50 -

2018

2020

2022

2016

Year

2014

2010

2012

Catskills Southern Hardwood HMF Secondary HMF Old-growth Pine Barrens A Pine Barrens B Pine Barrens C Sandy Hook Holly Forest Sterling Forest A Sterling Forest B

All Forest Sites

CASE STUDY 1: SUCCESSION

- Perception that younger forests sequester more carbon due to quick growth and higher density. Heterotrophic respiration from disturbance might actually result in CO2 release larger than NPP.
- For most species, mass growth rate increases continuously with tree size, and large trees actively fix large amounts of carbon. (Stephenson et al. 2014)

 98.9% of North American tree species have an increasing mass growth rate in the largest trees (>100cm DBH)

- Hutcheson Memorial Forest, two sites: 60 year old secondary successional forest, old growth forest >300 years old
- New York Botanic Garden: Old growth Thain Forest is the oldest uncut upland forest in New York City.

HUTCHESON MEMORIAL FOREST AND NYBG

CASE STUDY 2: FIRE

NJ PINE BARRENS UPLAND FORESTS

NJ PINE BARRENS UPLAND FORESTS

DIFFERENT FIRE MANAGEMENT SCENARIOS

Reference: Scheller et al. (2011)

CASE STUDY 3: DISEASE

Catskills Southern Hardwood

CATSKILLS SOUTHERN HARDWOOD BY GENUS

Catskills Southern Hardwood 500 (Mg ha⁻¹) 400 Acer Fraxinus 300 **Total Biomass** Liriodendron Quercus Tilia 200 Other 100 0 2014 2015 2016 2017 2018 2019 2020 2021 2022 Year

EFFECTS OF EMERALD ASH BORER (EAB) IN NW OHIO

STUDY LIMITATIONS

SITE INCONSISTENCY

Only some plots had a permanent rebar center; the majority were moved around every year.

LIMITED DATA

We eliminated data that was inconsistent or insufficient reducing our overall pool of data

QUESTIONABLE TRENDS

2016 Sterling Forest Location A shows huge unexplained peak in biomass, 2014 different methods

UNIDENTIFIED SPECIES

Many species were unidentified or "best guesses"

FINAL THOUGHTS

STATEWIDE TRENDS

Satellite data shows an overall decline in aboveground biomass of forests in recent years.

OUR RESULTS

-HMF and NYBG show slight increases in biomass -Pine Barrens results vary due to fire history and study limitations -Catskills show decline due to emerald ash borer

CONCLUSION

Statewide trends mask complex ecosystem dynamics that vary dramatically between forests.

REFERENCES

Chojnacky, David C., Heath, Linda S., & Jennifer C. Jenkins. 2014. "Updated generalized biomass equations for North American tree species." Forestry. 87: 129-151.

Flower, Charles E., Knight, Kathleen S., & Gonzalez-Meler, Miquel A. 2013. "Impacts of the emerald ash borer (Agrilus planipennis Fairmaire) induced ash (Fraxinus spp.) mortality on forest carbon cycling and successional dynamics in the eastern United States." *Biological Invasions*. 15: 931–944. <u>https://doi.org/10.1007/s10530-012-0341-7</u>

Jenkins, J., Chojnacky, D., Heath, L., & Birdsey, R. 2003. "National-scale biomass estimators for United States tree species." Forest Science. 49(1): 12-35.

Scheller, R.M., Van Tuyl, S., Clark, K.L. et al. Carbon Sequestration in the New Jersey Pine Barrens Under Different Scenarios of Fire Management. Ecosystems 14, 987–1004 (2011). <u>https://doi.org/10.1007/s10021-011-9462-6</u>

Stephenson, N.L., et al. 2000. "Rate of tree carbon accumulation increases continuously with tree size". Nature. 507. 10.1038/nature12914.

Tamiminia, Haifa, Salehi, Bahram, Masoud, Mahdianpari, Beier, Colin M. & Johnson, Lucas. "Mapping Two Decades of New York State Forest Aboveground Biomass Change Using Remote Sensing." *Remote Sensing*. 14: 4097.

United States Environmental Protection Agency. 2022. "Level III and IV Ecoregions of the Continental United States." <u>https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states</u>