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• Exposure to ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature death.

• In Africa, surface PM2.5 data is sparse, hindering pollution mitigation plans and human health improvement. 

• Emerging hybrid surface air quality observation networks of reference monitors and well-calibrated low cost 
sensors provide an opportunity to evaluate and improve models over Africa.

• Satellite data from agencies such as the National Aeronautics and Space Administration (NASA) provide near-
complete spatial coverage, but their columnar nature is imperfect representations of surface pollution. 

• Objectives: 

1. Compare PM2.5 predicted using the GEOS-Chem and machine learning (XGBoost) models.

2. Evaluate the models against surface PM2.5 monitoring sites across sub-Saharan Africa.

1. Introduction

2. GEOS-Chem Model
• GEOS-Chem is a global 3D chemical transport model used freely to investigate atmospheric chemistry. 

• Set up GCClassic v13.3.3 with a custom nested grid at 0.25° x 0.3125° horizontal resolution, 72 vertical layers, 
and GEOS-FP meteorology.

• Used 2013 DICE-Africa emissions inventory from Marais and Wiedenmeyer (2016). Scaling emissions to 2021 
had little impact on modeled concentrations.

• Ran simulations (October 2020 - December 2021) on Columbia’s HPC “Ginsburg” on a 32-core node.
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3. Machine Learning Model
• Extreme Gradient Boosting (XGBoost) is a relatively novel, highly efficient, and sparsity-aware machine 

learning algorithm for parallel decision tree learning (Chen and Guestrin, 2016). This algorithm uses 
regularization and tree pruning to avoid overfitting and improve generalization. 

• We found XGBoost to be the best algorithm, outperforming random forest and multiple linear regression.   

• The model was trained at six cities (monitoring sites): Abidjan, Abuja, Accra, Bamako, Conakry, Lagos.

• Used 13 input features to predict daily PM2.5:

ü ECMWF reanalysis v5 (ERA5): surface pressure (sp), 2-m temperature (t2m), total precipitation (tp), 10-
m u-component of wind (u10), 10-m v-component of wind (v10)

ü TROPMOMI satellite retrievals of tropospheric trace gas columns and aerosol properties: carbon 
monoxide (co), formaldehyde (hcho), nitrogen dioxide (no2), ozone (o3), sulfur dioxide (so2), absorbing 
aerosol index (aai), aerosol height (ah)

ü MODIS MAIAC satellite retrievals: aerosol optical depth (aod)

4. Machine Learning vs. GEOS-Chem
• Designated a GEOS-Chem 2° x 2.5° global simulation as the testbed for asserted PM2.5 observations. 

• Trained a new XGBoost model using a total of eight input features at each of 14 cities:

ü NASA satellite earth observations: aerosol optical depth (AOD), normalized difference vegetation index 
(NDVI), water vapor (WV), reflected shortwave radiation (SW), elevation (TOPO), population density (POP)

ü Engineered features: season indicator (SEASON), one-month right-shifted PM2.5 (PM_SHIFT)

ü Cities: Abidjan, Abuja, Accra, Addis Ababa, Bamako, Conakry, Kampala, Khartoum, Kigali, Kinshasa, 
Lagos, Libreville, Nairobi, N’Djamena

5. Evaluating GEOS-Chem and Machine Learning Against Obs

• GEOS-Chem mostly underestimates observed surface PM2.5. The modeled diurnal profiles are fairly flat. Model 
limitations may include coarse resolution and inadequate emissions. 

• Overall, XGBoost has a higher r2 (coefficient of determination) and lower MAE (mean absolute error) when 
compared to observations. However, both models miss some peaks (features of hyperlocal emissions sources).

6. Conclusions
• Our machine learning model performed better than GEOS-Chem temporally at available PM2.5 monitoring sites 

but does not yet fully capture PM2.5 spatially across sub-Saharan Africa.

• Machine learning is an attractive alternative or supplement to traditional chemical transport models, 
particularly if motivated by faster results, lower costs, and general ease of implementation.

• As air quality monitoring networks expand across Africa, providing more balanced data coverage, the 
machine learning spatial predictions are expected to improve.

• In the future, we aim to create a new dataset of satellite-derived, ground-truthed 1 km2 daily surface PM2.5 for 
policy evaluation in Africa. Our dataset will also enable cutting-edge research on climate change impacts on 
surface air quality levels in Africa.

Figure 1. GEOS-Chem model domain 
(box) including 14 reference-grade (blue, 
green, purple) and 13 low-cost PM2.5

monitoring sites (red). Note that some cities 
have multiple sites (points overlap).

Figure 2. Annual mean 
PM2.5 over the domain. The 
northern part is particularly 
impacted by Harmattan 
(dust season). There are 
faint pollution hot spots 
representing major cities.

Figure 3. Built-in XGBoost feature importance 
scores. For this given model run, total 
precipitation and aerosol optical depth were the 
most important features. This suggests that 
precipitation is significant for removing pollutants 
from the atmosphere and confirms that AOD is a 
reasonable proxy for PM2.5.

Figure 4. Annual mean PM2.5 over West Africa based 
on meteorological and AOD features only. Again, we 
see higher values to the north (drier/dusty) and lower 
values to the south (wetter/vegetated).

Figure 6. Annual mean predicted (left) and residual (right) PM2.5 over the domain. Residual is “observed” 
(GEOS-Chem) minus predicted (XGBoost). The XGBoost model underestimates PM2.5 by over 50 µg m-3 in the 
semi-arid Sahel region of Niger and Chad, influenced more by Saharan dust. On the other hand, PM2.5 is 
overestimated over the relatively clean, remote Atlantic Ocean. The model performs better in the vincinity of 
cities where it was trained (e.g. a residual of -0.003 µg m-3 in northeast Ghana). 

Figure 7. Left plots show daily mean surface PM2.5 from GEOS-Chem (orange) and reference monitors (blue). 
Right plot is the model performance for daily mean PM2.5 (points) at all 14 sites.

Figure 8. Diurnal profiles 
of PM2.5 from GEOS-
Chem (orange) and 
reference monitors (blue) 
at select cities.

Figure 9. Left plots show XGBoost predicted PM2.5 (green) compared to reference monitor observed PM2.5 (blue). 
Right plot is model performance on test set (20% of entire dataset) for daily mean PM2.5 (points) at all six cities.
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Figure 5. Flowchart on left illustrates XGBoost model training and testing 
steps. Top right plot shows the model tested on 20% of data (80% for 
training) for three experiments. Here, confidence intervals are defined as 
two standard deviations from 100 model runs. Bottom right plot displays 
feature importance from the third experiment. The model performs better 
when PM_SHIFT is introduced, and this feature ranks as most important.


