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Introduction 
 

Ambient (outdoor) air pollution is on the rise in Africa due to rapid population growth 

and industrialization. Poor air quality caused 1.1 million premature deaths across Africa in 2019 

alone (Fisher et al., 2021). According to the World Health Organization (WHO, 2021), the annual 

and 24-hour mean values for particulate matter with an aerodynamic diameter of 2.5 µm or 

less (PM2.5)—an important proxy for air pollution—should not exceed 5 µg m-3 and 15 µg m-3, 

respectively. However, these guidelines are often severely violated in major African cities. For 

example, one study showed that Addis Ababa, Ethiopia had a daily PM2.5 concentration of 53.8 

(±25.0) µg m-3 from 2015-2016 (Tefera et al., 2020). While the total PM2.5 levels were highest in 

Addis Ababa during the rainy season (June-September) from increased motor vehicle and 

biomass burning emissions, the soil dust component (13.5%) of PM2.5 was highest during the 

dry season from unpaved roadways and construction activities (Tefera et al., 2020). Depending 

on the meteorology, winds may transport desert mineral dust into a given region, or a 

temperature inversion can trap pollutants near the surface. Dust storms during the Harmattan 

season (November-March) greatly enhance PM2.5 levels.  

Environmental decision-makers are limited in their ability to regulate air quality by a 

paucity of reliable air quality measurements in sub-Saharan Africa. Two such end-user 

organizations are the Addis Ababa Environmental Projection and Green Development 

Commission (AAEPGDC) and Ghana Environmental Protection Agency (EPA Ghana). Many of the 

reference-grade PM2.5 monitors are located in the largest cities and became operational only in 

2020-2021. To fill in the in-situ spatiotemporal measurement gaps, satellite remote sensing 

data are ingested by air quality models. GEOS-Chem is a global 3-D atmospheric chemistry 

model driven by assimilated meteorological data from NASA Goddard Earth Observation 

System (GEOS), along with emissions, chemistry, aerosol microphysics, and deposition (GEOS-

Chem, 2021). It is employed by research groups around the globe, but predicting PM2.5 at a high 

resolution and for a long time period can be very computationally intensive. To obtain faster 

results and save costs, different machine learning techniques are being explored. Recently, 

Zhang et al. (2021) used a random forest algorithm to estimate PM2.5 in South Africa with the 

following inputs: PM2.5 at 20 monitoring stations, aerosol optical depth, two emission 



parameters, four socioeconomic parameters, three land cover parameters, and 13 

meteorological parameters. They obtained a cross-validation R2 of 0.80, found seasonal 

indicator to be the most important predictor, and noticed that the model underestimated at 

PM2.5 > 35 µg m-3 but overestimated at PM2.5 < 5 µg m-3 (Zhang et al., 2021). Although complex 

machine learning models have proven to be skillful, there is always a risk of overfitting, and 

proper hyperparameter tuning takes time. 

 

Objectives 
 
The primary objectives of this project were the following: 

1. Utilize machine learning to estimate daily mean PM2.5 concentrations for nine major 

cities in sub-Saharan Africa 

2. Compare the model performance of multiple linear regression, as a baseline, with that 

of decision-tree-based algorithms, namely random forest and Extreme Gradient 

Boosting (XGBoost) 

3. Assess the importance of each of 11 meteorological and satellite features used to 

predict PM2.5  

 

Based on previous work, XGBoost was expected to perform the best, followed closely by 

random forest. In addition, aerosol optical depth was anticipated to be the most important 

variable because it has been shown to have a strong positive relationship with PM2.5.     

 

Data  
 

Within sub-Saharan Africa, this project focused on nine air quality monitoring sites 

(Figure 1). We were initially interested in comparing western (six sites) and eastern (three sites) 

regions, but the total area (all sites) was ultimately used for the results in this paper. Each site is 

located in a country’s capital, except for Lagos which is the largest city in Nigeria and out of all 

the cities. Table 1 shows that the cities have populations in the millions, which suggests high 

levels of air pollution. There is a wide range of elevations: Lagos, Conakry, Abidjan, and Accra 



are near sea level; Bamako, Khartoum, and Abuja are at 1000-2000 ft; Kampala is near 4000 ft; 

and Addis Ababa is near 8000 ft. In western Africa, there are clear wet (summer) and dry 

(winter) seasons. Climate differences in eastern Africa are related to latitude and elevation: 

Kampala is near the equator, hilly, and wet year-round; Addis Ababa is surrounded by 

mountains and has a short wet season; and Khartoum lies in the hot, dry, and flat Sahel region.   

 
 

 
 
Figure 1. International map of operational air quality monitoring sites (AirNow.gov). The total study area 

includes nine sites, six located in western Africa (purple rectangle) and three located in eastern Africa 

(purple oval). 

 
 
 
 
 
 
 



City Country Region Elevation 
(feet) 

Population 
(2021) Climate Type 

Abidjan Ivory Coast West 95 4,787,000 Tropical Wet and 
Dry 

Abuja Nigeria West 1,542 3,499,000 Tropical Wet and 
Dry 

Accra Ghana West 115 5,074,000 Tropical Wet and 
Dry 

Addis Ababa Ethiopia East 7,726 5,503,000 Subtropical 
Highland 

Bamako Mali West 1,096 3,750,000 Tropical Wet and 
Dry 

Conakry Guinea West 42 2,729,000 Tropical 
Monsoon 

Kampala Uganda East 3,898 4,495,000 Tropical 
Rainforest 

Khartoum Sudan East 1,263 6,071,000 Hot Desert 

Lagos Nigeria West 36 15,487,000 Tropical Wet and 
Dry 

 
Table 1. Overview of each of the cities, including elevation (Burle, 2018), population (Demographia, 

2021), and climate type (Beck et al., 2018).   

   

 

Daily mean PM2.5 (µg m-3) observations from U.S. embassies and consulates were 

obtained from the AirNow website. Using the Copernicus Climate Data Store (CDS) API, daily 

fifth generation ECMWF reanalysis for global climate and weather (ERA5) products were 

downloaded for five meteorological parameters (#1-5 in Table 2). Thereafter, the Google Earth 

Engine API was used to download remote sensing products for six satellite-measured 

parameters (#6-11 in Table 2). 

 
 
 



# Variable Name Units 

1 t2m 2-m Temperature K 

2 u10 10-m U-Component of Wind m s-1 

3 v10 10-m V-Component of wind m s-1 

4 sp Surface Pressure Pa 

5 tp Total Precipitation m 

6 co Carbon Monoxide mol m-2 

7 hcho Formaldehyde mol m-2 

8 o3 Ozone mol m-2 

9 so2 Sulfur Dioxide mol m-2 

10 no2 Nitrogen Dioxide mol m-2 

11 aod Aerosol Optical Depth (AOD) Dimensionless 

 
Table 2. List of predictors used in this project.  

 
 

Surface 1-km AOD was derived via the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Terra and Aqua combined Multi-angle Implementation of Atmospheric Correction 

(MAIAC). For each of the tropospheric trace gases (#6-10 in Table 2), measured by the 

Tropospheric Monitoring Instrument (TROPOMI), vertically integrated column number density 

was requested. The daily mean data for all sites were aggregated into two data frames, one for 

western Africa (2249 rows) and another for eastern Africa (2029 rows), and then combined into 

a single data frame (4278 rows). Note that the rows correspond to days with available PM2.5 

data and time gaps exist. Furthermore, the time periods varied depending on the inception of 

site measurements (all ending May 27, 2021): 

1. Addis Ababa = January 1, 2019 

2. Kampala = January 1, 2019  

3. Khartoum = January 8, 2020  

4. Abidjan = February 3, 2020  

5. Abuja = February 12, 2021 



6. Accra = January 28, 2020  

7. Bamako = October 9, 2019 

8. Conakry = January 27, 2020  

9. Lagos = January 1, 2021  

 

Methods 
 

Before training the models, the data needed to be cleaned. Negative trace gas values 

were deemed incorrect and therefore replaced by “nan” (not a number) in Python. Since this 

created more data gaps, linear interpolation was performed for each site. An alternative 

approach would be dropping rows with any missing values; however, this was undesirable 

because the number of data points would be drastically reduced. A correlation matrix was 

created to understand the linear relationships between variables. Reducing the number of 

features to the top five highest correlated with PM2.5 degraded model performance; 

consequently, all 11 variables were utilized for this paper. From the popular Python machine 

learning library, Scikit-learn, the data were split following standard practice into training (80%) 

and test (20%) sets, with a defined “random state” to ensure reproducibility.  

Multiple linear regression is a simple model that minimizes the residual sum of squares 

between observed and predicted variables. For this project, coefficients and variables were 

combined to derive the following equation: 

 
𝑝𝑚25 = −350.5433 + (1.6758 ∙ 𝑡2𝑚) − (3.2397 ∙ 𝑢10) − (1.7398 ∙ 𝑣10)

− (0.0003 ∙ 𝑠𝑝) + (2822.8269 ∙ 𝑡𝑝) + (620.9833 ∙ 𝑐𝑜)

+ (3996.3040 ∙ ℎ𝑐ℎ𝑜) − (986.8652 ∙ 𝑜3) + (8206.9625 ∙ 𝑠𝑜2)

+ (17341.2729 ∙ 𝑛𝑜2) + (18.8365 ∙ 𝑎𝑜𝑑) 

 

(1) 

 
Increasingly, decision-tree-based algorithms have demonstrated success in a variety of 

disciplines for both classification and regression tasks. Some of the benefits include versatility 

with large and small data sets, ability to handle missing data, inclusion of feature importance, 

and balance between simplicity and accuracy (Biau & Scornet, 2016). Figures 2 presents a 

sample decision tree with two levels from a small forest of 10 trees. Starting from the root node 



(top), variables such as “t2m”, “co”, and “aod” are tested, and the results are split by branches. 

The terminal nodes or leaves (bottom) contain the final outcomes for PM2.5. Many such trees 

are constructed from bootstrap samples with replacement, and their predictions are averaged 

through bootstrap aggregation (bagging) to reduce the variance. To improve on bagging, 

random forest performs splits only on a random subset of features, thereby decorrelating the 

trees. More recently, XGBoost has emerged as a way to increase model speed and 

performance. Boosting constructs trees sequentially based on the residuals of the previous 

tree. Gradient descent is used to minimize the loss function.  

 

 
 
Figure 2. A decision tree extracted from a forest of n_estimators = 10 and max_depth = 2. 

 
 

Decision-tree-based algorithms have a black box flavor, as the full theory is esoteric and 

underdeveloped. To improve the models, this paper explored some basic hyperparameter 

tuning (Table 3). From the Scikit-learn package, “RandomizedSearchCV” was first implemented 

to narrow down the range of possible values for each hyperparameter to test. Next, 

“GridSearchCV” was run using three-fold cross validation to attempt to find the optimal 

parameters. Predictions were made based on these best parameters, which differed between 

random forest and XGBoost, mainly to reduce the likelihood of overfitting. There were 3 folds x 

81 candidates = 243 fits (four hyperparameters) for random forest and 3 folds x 243 candidates 

= 729 fits (five hyperparameters) for XGBoost. The entire Python script took about 30 minutes 

to finish running. 



Model Hyperparameter Name Test Values Best Value 

RF n_estimators Number of trees [400, 500, 600] 500 

RF max_depth Maximum tree depth [20, 30, 40] 30 

RF min_samples_leaf Minimum samples at 
leaf node [1, 2, 3] 1 

RF min_samples_split Minimum samples to 
split internal node [2, 3, 4] 2 

XGB n_estimators Number of trees [400, 500, 600] 400 

XGB max_depth Maximum tree depth [7, 8, 9] 8 

XGB learning_rate Learning rate for 
gradient boosting [0.05, 0.06, 0.07] 0.06 

XGB colsample_bytree Column subsample 
ratio for each tree [0.7, 0.8, 0.9] 0.8 

XGB subsample Subsample ratio from 
training set [0.7, 0.8, 0.9] 0.8 

 
Table 3. Hyperparameters tested and used for random forest (RF) and XGBoost (XGB) in this project. 

 

 

Results and Discussion 
 

As displayed in Figure 1, the PM2.5 levels were relatively low (mostly < 100 µg m-3) 

throughout the time period in Abidjan and Addis Ababa. This suggests that sources of air 

pollution have been kept under control quite well in these cities. Kampala had moderate levels 

of PM2.5 with considerable daily noise, likely due to meteorological variability. Conakry and 

Accra each had one extreme pollution episode (374 and 483 ug/m3), possibly signatures of dust 

storms. The remaining cities—Abuja, Bamako, Lagos, and Khartoum—each had multiple severe 

pollution days (> 200 µg m-3). For sites with longer time periods, the seasonal cycle is more 

prominent; for example, Bamako and Khartoum appear to have lower average PM2.5 

concentrations between July and November.   

 



 
 
Figure 3. Time series of daily mean PM2.5 observations for each city in sub-Saharan Africa. Note that the 

range of PM2.5 (y-axis) is the same, but the time period (x-axis) varies by site.  

 
 

While a plethora of linear relationships could be analyzed between the variables (Figure 

4), a brief summary is provided here. Temperature, CO, NO2, and AOD were positively 

correlated with PM2.5 (r ³ 0.2), while both wind components and O3 were negative correlated 

with PM2.5 (r £ -0.2). Northeasterly trade winds during the Harmattan season is consistent with 

elevated PM2.5 levels due to desert dust. Surface pressure had a relatively strong linear 

relationship with temperature and CO (r ³ 0.6). This may be explained by higher temperatures 

at lower elevations (higher pressure), where there tend be more cities with greater sources of 

emissions. Temperature and precipitation were most negatively correlated (r = -0.32). Typically, 

higher temperatures in Africa are associated with clear conditions, which means less rainfall.   

 



 
 
Figure 4. Correlation coefficient for any two variables including PM2.5 and the 11 features.   

 
 

The model evaluation results in Figure 5 show that XGBoost performed the best (r2 = 

0.63), having a slight edge over random forest (r2 = 0.61) and significant advantage over 

multiple linear regression (r2 = 0.24). Differences between random forest and XGBoost are small 

and influenced by hyperparameter tuning. Either decision-tree-based algorithm can be used to 

reasonably estimate daily PM2.5 for cites located in sub-Saharan Africa within about 25 µg m-3 

on average. However, peaks in PM2.5 tend to be difficult to predict, as indicated by the outliers. 

All the models underestimate PM2.5 overall, based on the best fit line, but multiple linear 



regression especially underestimates (up to 3-5 times less). These models are more suitable for 

predicting PM2.5 on low pollution days or on average, for example monthly.  

 

 
 
Figure 5. PM2.5 predictions compared with test set observations for multiple linear regression (top left), 

random forest (top right), and XGBoost (bottom center). A higher coefficient of determination (r2) or 

lower root mean squared error (RMSE) indicates better model performance.    

 
 

Despite the similarities between random forest and XGBoost, discrepancies in feature 

importance may exist. Figure 6 shows that AOD was the most important variable in both 

models. Indeed, past literature has shown that AOD can be a good proxy for PM2.5. However, 



while total precipitation was considered important by XGBoost, it was one of the least 

important variables in random forest. Surface pressure was fairly important in both models, 

possibly a sort of classifier by site elevation. CO was also quite important in both algorithms, 

but SO2 and NO2 appear to be least important. The larger contribution of CO might reveal the 

dominant sources of pollution, such as vehicular emissions and biomass burning, in African 

cities. 

 

 
 

 
 

Figure 6. Comparison of random forest and XGBoost feature importance. Higher values denote greater 

importance. 



In Figure 7, the machine learning predictions overlay the original observed data time 

series (training + testing) for each city. At first glance, multiple linear regression deviates 

substantially from the observed data, overestimating many of the lower PM2.5 levels and failing 

to capture some of the peaks. This is confirmed in Figure 8, which shows that the RMSE for MLR 

always exceeds that of RF or XGB. MLR performed best for Abidjan (20.3 ug/m3) and worst for 

Abuja (55.2 ug/m3). Compared with random forest, XGBoost had a lower RMSE or stronger 

performance for each city. RF performed best for Addis Ababa (4.3 ug/m3) and worst for 

Bamako (23.7 ug/m3). XGB also performed best for Addis Ababa (3.8 ug/m3) and worst for 

Bamako (20.0 ug/m3). The skill of the decision-tree-based algorithms seems to depend on the 

variability within a given time series. Addis Ababa had consistently low PM2.5 concentrations, 

while Abuja had many large spikes in a shorter time period. Although the exact magnitudes of 

peaks might have not be captured, random forest and XGBoost appear to have recognized the 

occurrence of many of these peaks which corresponded to severe pollution episodes. 

 

 
 

Figure 7. Time series of predicted versus observed daily mean PM2.5 concentrations for each city in sub-

Saharan Africa. Observed data (bold black), multiple linear regression (blue), random forest (red), and 

XGBoost (green) are compared. 



 
 
Figure 8. Performance of multiple linear regression (blue), random forest (orange), and XGBoost (green) 

using the entire training + testing data for each city. Lower PM2.5 root mean squared error indicates 

better model performance. 

 
 
Conclusions 
 

This project aimed to use three machine learning models to predict daily PM2.5 

concentrations for nine cities in sub-Saharan Africa. For the entire test set and each city, the 

decision-tree-based algorithms clearly outperformed the simple multiple linear regression 

approach. XGBoost had a 0.55 ug/m3 lower RMSE than random forest for the test set, which 

suggests XGBoost was the best model in this particular study. Both decision-tree-based 

algorithms indicated that AOD was most important feature, while NO2 and SO2 were among the 

least important features. All the models tended to underestimate PM2.5 levels, which could lead 

to greater exposure to air pollution. Furthermore, the models appeared to perform better for 

cities with consistently low PM2.5 concentrations and worse for those with multiple large peaks. 



This suggests that random forest or XGBoost may be useful for estimating PM2.5 levels on 

monthly to seasonal time scales and at least recognizing the occurrence of severe pollution 

episodes on shorter time scales.  

Additional hyperparameter tuning in the future would increase confidence in the 

decision-tree-based algorithms. Moreover, data collected over a longer time period and added 

significant variables, such as planetary boundary layer depth or land cover, would be of 

interest. As demonstrated by Zhang et al. (2021), machine learning models such as random 

forest have the potential to provide epidemiologists and policymakers with high spatiotemporal 

maps. Machine learning has the potential to replace elements of chemical transport models 

such as GEOS-Chem. This could help speed up model runs and updates, saving time and money. 

As new air quality monitoring sites are established and existing ones continue to collect 

measurements throughout Africa, spatiotemporal data gaps can be filled and, coupled with 

modeling, support efforts to reduce exposure to air pollution.     
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